In statistics, the Matérn covariance, also called the Matérn kernel,[1] is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn.[2] It specifies the covariance between two measurements as a function of the distance between the points at which they are taken. Since the covariance only depends on distances between points, it is stationary. If the distance is Euclidean distance, the Matérn covariance is also isotropic.
The power spectrum of a process with Matérn covariance defined on is the (n-dimensional) Fourier transform of the Matérn covariance function (see Wiener–Khinchin theorem). Explicitly, this is given by
When , the Matérn covariance can be written as a product of an exponential and a polynomial of degree .[5][6] The modified Bessel function of a fractional order is given by Equations 10.1.9 and 10.2.15[7] as
.
This allows for the Matérn covariance of half-integer values of to be expressed as
^Minasny, B.; McBratney, A. B. (2005). "The Matérn function as a general model for soil variograms". Geoderma. 128 (3–4): 192–207. doi:10.1016/j.geoderma.2005.04.003.
^Santner, T. J., Williams, B. J., & Notz, W. I. (2013). The design and analysis of computer experiments. Springer Science & Business Media.
^Stein, M. L. (1999). Interpolation of spatial data: some theory for kriging. Springer Series in Statistics.
^Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
^ abCheng, Dan (July 2024). "Smooth Matérn Gaussian random fields: Euler characteristic, expected number and height distribution of critical points". Statistics & Probability Letters. 210: 110116. arXiv:2307.01978. doi:10.1016/j.spl.2024.110116.